淮安销售塑料包装及容器价格
发布时间:2023-03-14 01:26:18
淮安销售塑料包装及容器价格
1、石英晶体振荡器的结构石英晶体振荡器是利用石英晶体(二氧化硅的结晶体)的压电效应制成的一种谐振器件,它的基本构成大致是:从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑料封装的。2、压电效应若在石英晶体的两个电极上加一电场,晶片就会产生机械变形。反之,若在晶片的两侧施加机械压力,则在晶片相应的方向上将产生电场,这种物理现象称为压电效应。如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,比其他频率下的振幅大得多,这种现象称为压电谐振,它与LC回路的谐振现象十分相似。它的谐振频率与晶片的切割方式、几何形状、尺寸等有关。3、符号和等效电路当晶体不振动时,可把它看成一个平板电容器称为静电电容C,它的大小与晶片的几何尺寸、电极面积有关,一般约几个PF到几十PF。当晶体振荡时,机械振动的惯性可用电感L来等效。一般L的值为几十mH 到几百mH。晶片的弹性可用电容C来等效,C的值很小,一般只有0.0002~0.1pF。晶片振动时因摩擦而造成的损耗用R来等效,它的数值约为100Ω。由于晶片的等效电感很大,而C很小,R也小,因此回路的品质因数Q很大,可达1000~10000。加上晶片本身的谐振频率基本上只与晶片的切割方式、几何形状、尺寸有关,而且可以做得精确,因此利用石英谐振器组成的振荡电路可获得很高的频率稳定度。4、谐振频率从石英晶体谐振器的等效电路可知,它有两个谐振频率,即(1)当L、C、R支路发生串联谐振时,它的等效阻抗小(等于R)。串联揩振频率用fs表示,石英晶体对于串联揩振频率fs呈纯阻性,(2)当频率高于fs时L、C、R支路呈感性,可与电容C。发生并联谐振,其并联频率用fd表示。根据石英晶体的等效电路,可定性画出它的电抗—频率特性曲线。可见当频率低于串联谐振频率fs或者频率高于并联揩振频率fd时,石英晶体呈容性。

淮安销售塑料包装及容器价格
针触法顾名思义是通过触针与被检材料的接触来进行检测,是制造业中比较早的表面检测方法。被测表面的形状轮廓信息是通过触针传递给传感器的,所以触针的大小和形状就显得尤其重要。按照针触法的检测原理,针尖的半径趋近于0才有可能检测到被测物真实的轮廓。但是触针的针尖越细,被测表面产生的压力也会越大,触针容易受到磨损,划伤被测物表面。对于镀膜表层和软质金属,接触式检测容易损伤被测样品表层,一般是不可使用的。

淮安销售塑料包装及容器价格
谷歌的TPU是2017年图灵奖得主John Hennessy和David Patterson倡导的“特定域架构(Domain-Specific Architecture)”的具体体现,它是谷歌针对其云平台的特殊需求,以软件、算法和应用为主导的AI芯片开发范例。从通用型CPU、GPU和FPGA转向专用的SoC和AI加速器芯片是为了应对各种新兴应用的海量数据处理挑战,包括数据中心高性能计算、物联网广泛而零散的应用场景,以及自动驾驶和工业4.0等要求实时处理并决策等。不光是谷歌、亚马逊和阿里等互联网巨头和hypescaler云计算服务商开始开发自己的专用芯片,特斯拉也在开发自己的“完全自驾(FSD)”芯片。这些非标准、非售卖的芯片是为了满足这些公司特定的应用需求而定制开发的,因为他们无法从传统芯片厂商那里买到想要的芯片。就连传统的FPGA大厂赛灵思也开始转型,从芯片往平台型公司转变,其重心将转向高性能的数据中心和对计算有严格且灵活性要求的特定应用领域,所提供的产品也从FPGA芯片扩展到软件、AI算力和平台服务。VC对半导体行业的投资从2017开始迅猛增长,AI芯片初创企业受VC青睐。不过未来2-3年,这些获得巨额 融资的AI独角兽们就要拿着芯片到处找应用场景了。融资额高达6亿美元的地平线开始在自动驾驶和AIoT领域深耕,而倡导计算图(graphs,代表的是知识模型和应用,所有机器学习模型都用graph的形式来表达)理念的Graphcore则在其投资者Dell EMC和微软那里找到了其IPU的用武之地。还有很多其它AI芯片初创公司正在寻找着自己的"sweet spot"。

淮安销售塑料包装及容器价格
信息安全发展历程无论分三阶段、还是四阶段,分类标准总是和信息技术的创新、媒体传输介质的改变、互联网的飞速发展、数字化的转型、法律法规的要求等分不开。笔者比较喜欢发布在51cto 上的Jack zhai的分法,从企业角度来说明安全保障理念的发展趋势。芯片设计所处的行业是非常典型传统型的,通常信息系统和研发环境都建立在企业自己的数据中心。起初,研发环境主要是以物理防护和网络层隔离的传统保护方式,人员管理制度也是粗线条的行政性管理为主;后来随着虚拟化、网络技术的发展,研发环境的安全措施和安全运维开始从业务流程和整个企业IT环境考虑,在物理防护、网络层隔离基础上增加了防火墙、VDI隔离;数据的保护也从单一文件、目录的权限管理发展为更广泛的访问控制;管理体系也从粗线条的行政管理到全面建立系统服务监控和审计流程,定期培训使用人员提高安全意识;同时从业务流程和数据流角度采取相应安全措施,防止数据泄露,安全防护体系开始立体化。